U. S. Department of Agriculture Soil Conservation Service Engineering Division Design Branch

DESIGN NOTE NO. 15*

Subject: Submerged Weir Flow

Weir flow over a drop spillway is either free flow or submerged flow. Free (unsubmerged weir) flow exists when the tailwater surface is at or below the crest of the weir. Submerged weir flow exists when the tailwater surface is above the crest of the weir. The depth of submergence is the difference in elevation between the downstream water surface and the crest of the weir.

For free flow conditions the discharge through the weir is independent of the tailwater elevation and the depth at the weir is usually taken as critical depth. For submerged weir flow, the discharge may or may not be independent of the tailwater elevation. When the depth of submergence is 0.7 of the critical depth or less, the discharge is usually taken as equal to the free discharge. For greater submergence, the discharge is determined by both the headwater and tailwater depths (see Fig. 1).

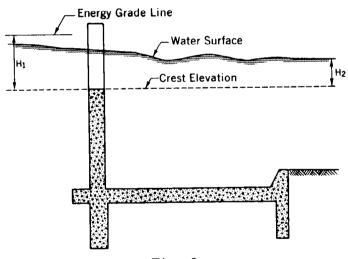


Fig. 1

 $H_1 \equiv \text{Specific energy head at crest of weir, ft}$

 $H_2 \equiv Submergence$ over the crest = difference in elevation between tailwater and crest of weir, ft

^{*}Prepared by H. J. Goon of the Design Unit, Design Branch, Hyattsville, Maryland.

 $L \equiv Length of weir, ft$

C ≡ Discharge coefficient for free flow

 $Q_f \equiv Discharge for free flow = C L H_1^{3/2}$, cfs

 $q_f \equiv \text{Discharge for free flow per foot length of weir} = \frac{Q_f}{L}$, cfs/ft

 $Q_s \equiv Discharge$ for submerged flow, cfs

 $q_s \equiv \text{Discharge for submerged flow per foot length of weir} = \frac{Q_s}{L}$, cfs/ft

The discharge for submerged flow is taken as

$$Q_s = R Q_f$$

$$q_s = R q_f$$

where R is assumed to be a function of submergence ratio, $\frac{H_2}{H_1}$.

Figure 3.4, page 3.17 of NEH-11, Drop Spillways, gives the relation between R and $\frac{H_2}{H_1}$. This figure was prepared by analyzing available test

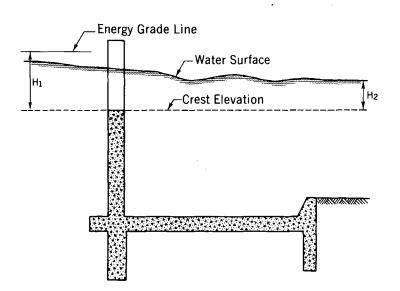
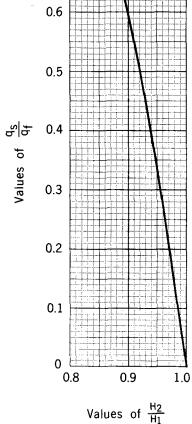

data of submerged flow over several types of weirs and earth embankments. The data indicate a wide band of values of R for given values of the submergence ratio. Therefore, precise results should not be expected from Figure 3.4. If precise results are necessary, a search of literature for discharge data from appropriate weirs or a model study is required.

Figure 3.4 is reproduced on Sheet 1 of ES-207. Observe that when $\mathbf{q_s}$ and $\mathbf{H_2}$ are given, $\mathbf{H_1}$ can not be explicitly evaluated from Sheet 1, ES-207. Although $\mathbf{H_1}$ may be solved by cut-and-try methods, it is desirable to transform the graph of Sheet 1, ES-207 into a form such that $\mathbf{H_1}$ can be explicitly evaluated. The transformed graph is given in Sheet 2 of ES-207. Thus

- 1. when H_1 and q_S are given, Sheet 1 is used to determine H_2 (see Example 1, Sheet 3 of ES-207).
- 2. when q_s and H_2 are given, H_1 can be explicitly evaluated from Sheet 2, ES-207. (See Example 2).
- 3. when $\rm H_1$ and $\rm H_2$ are given, either Sheet 1 or Sheet 2 may be used to determine $\rm q_{_{\rm S}}$.

DROP SPILLWAYS: Relation Between Submergence and Discharge Given H₁ and Q_s, determine H₂



 $H_1 \equiv$ Specific energy head at crest of weir, ft.

H₂ ≡ Submergence over the crest = Vertical distance between tailwater and crest of weir, ft.

q_s ≡ Discharge for submerged flow per foot length of weir, cfs/ft.

 $q_f \equiv Discharge for free flow per foot length of weir,$ cfs/ft. = 3.1 H³/₂

REFERENCE

NEH-11 Drop Spillways Page 3.17-Figure 3.4 U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ENGINEERING DIVISION DESIGN UNIT

STANDARD DWG. NO. ES - 207 SHEET 1 OF 3 DATE 3 - 73

DROP SPILLWAYS: Relation Between Submergence and Discharge Given H₂ and Q₅, determine H₁ 2.8 **Energy Grade Line** 2.7 Water Surface Crest Elevation 2.5 ᅰ 2.4 2.3 2.2 $H_1 \equiv$ Specific energy head at crest of weir, ft. 2.1 H₂ ≡ Submergence over the crest = Vertical distance between tailwater and crest of weir, ft. $q_s \equiv$ Discharge for submerged flow per foot length of 2.0 weir, cfs/ft. 1.9 1.8 1.7 1.6 扎감 1.5 Values of 1.4 1.3 6.0 5.0 2.0 1.0 3.0 Values of STANDARD DWG. NO. REFERENCE U. S. DEPARTMENT OF AGRICULTURE ES-207 NEH-11 Drop Spillways SOIL CONSERVATION SERVICE Page 3.17-Figure 3.4 SHEET 2 OF 3 ENGINEERING DIVISION - DESIGN UNIT

DATE _ 3 - 73

DROP SPILLWAYS: Relation Between Submergence and Discharge

Example 1

Given: A drop spillway with submerged flow

Discharge coefficient, C = 3.1

Specific energy head, $H_1 = 4.20$ ft

Length of weir, L = 19 ft

Discharge, $Q_s = 480$ cfs

Submergence over the crest, H2 Determine:

 $Q_f = 3.1 L H_1^{3/2} = 3.1(19)(4.20)^{3/2} = 507 cfs$ Solution:

 $\frac{q_s}{q_s} = \frac{Q_s}{Q_s} = \frac{480}{507} = 0.947$

 $\frac{n_2}{H_1} = 0.585$ (Sheet 1, ES-207)

 $H_2 = 0.585(4.20) = 2.46 \text{ ft}$

Example 2

A drop spillway with submerged flow

Length of weir, L = 19 ft

Discharge, $Q_s = 480$ cfs

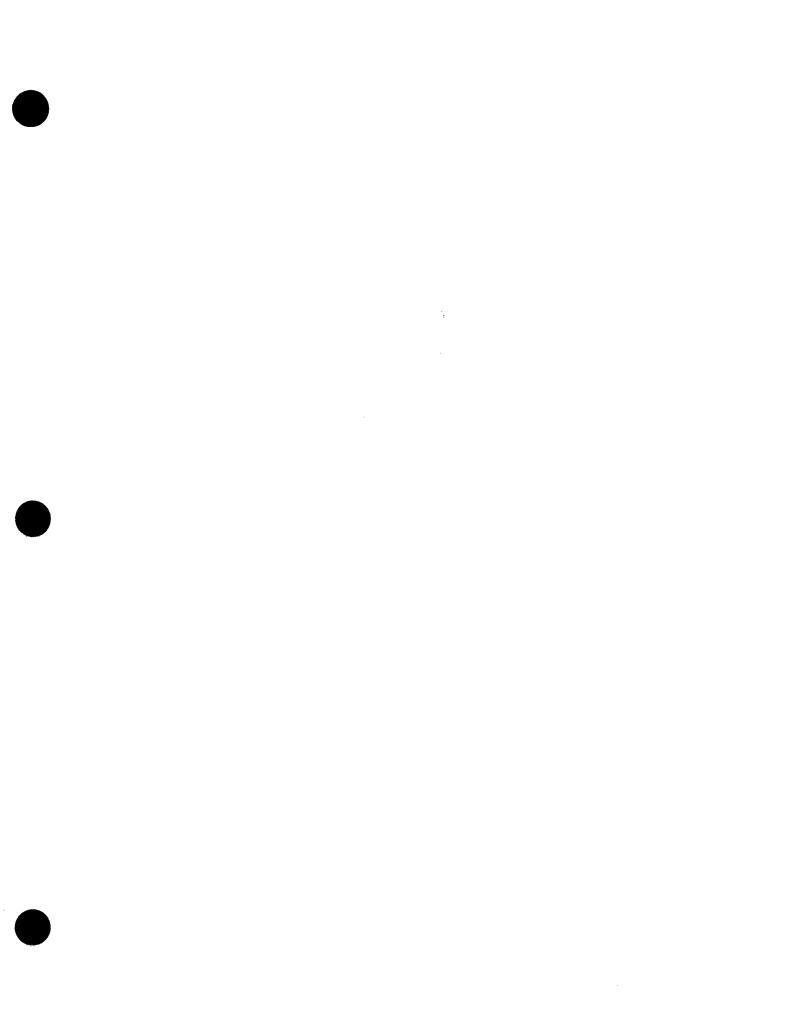
Submergence over the crest, $H_2 = 2.46$ ft

Specific energy head, H₁ Determine:

 $q_s = \frac{Q_s}{r} = \frac{480}{19} = 25.3 \text{ cfs/ft}$ Solution:

 $\frac{q_s^{2/3}}{H_{-}} = \frac{(25.3)^{2/3}}{2.46} = \frac{8.62}{2.46} = 3.50$

 $\frac{H_1}{H_2} = 1.71$ (Sheet 2, ES-207)


 $H_1 = 1.71(2.46) = 4.20 \text{ ft}$

REFERENCE NEH-11 Drop Spillways Page 3.17-Figure 3.4

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ENGINEERING DIVISION - DESIGN UNIT STANDARD DWG. NO. ES-207

SHEET 3 OF 3

DATE _ 3 - 73

